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Abstract-Previous work which established upper and lower bounds on the creep life of steadily loaded
structures is extended to cater for load and temperature variations in non-homogeneous structures. The
investigation is limited to the range where short term plasticity and fatigue damage can be ignored. For
proportional loading, the upper bound which is based on limit analysis, is similar in form to that for constant
loading. In the more general case, the upper bound is less stringent and is based on the mean load and
temperature distribution over the lifetime. A lower bound on life is taken as the time for the first part of the
structure to fail.

The bounds are applied to three simple structures. For proportional loading the upper bound predicts the
lifetime with the same accuracy as for constant loading except for extreme load variations. The presence of a
temperature distribution alters the accuracy of the upper bound prediction but in most cases the change is
small. In contrast, the lower bound is very sensitive to the temperature gradient.

The authors use these results to develop approximate techniques for estimating the creep life of
components subjected to variable loads and temperature distributions. Simplified design procedures based on
the upper bound are examined and suitable amendments are proposed.

NOTATION

a scalar multiplier
ao radius ratio {= aIb}
f30 radius ratio {= rJro}

Illi Kronecker's delta
Eli strain-rate tensor

IJ temperature
A, JL parameters describing loading cycle

u, equivalent stress {= GS'iS,t>l/2}
U... u., u, radial, hoop and axial stress components, respectively

Uli stress tensor
q,(O'lj) creep energy dissipation surface

X ratio of collapse load to load for first yield
l/1(U'i) rupture surface

a, b internal and external radii of disc
D creep damage rate

g(lJ) positive function of temperature
m rupture index
n creep deformation index
p pressure

Pi applied loads
r radius

ri, ro internal and external radii of tube
S surface

S'j deviatoric stress tensor {= Uli - ~ ll,jUk.}
t time

t, rupture time
t* upper bound rupture time
t, time of failure of first part of structure
T period of cycle
UI displacement rates
V'l creep strain rates
V volume
x spatial co-ordinates

1. INTRODUCTION

The paper considers structures subjected to load and temperature variations within the range
where short term plasticity and fatigue damage can be ignored. Under such conditions, structures
operating at high temperature will fail ultimately by creep rupture mechanisms. Initial rupture
occurs in the region of stress concentration but the life of the structure is not exhausted until
sufficient material has failed for a collapse mechanism to be formed. This presumes the material
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is ductile so that it can tolerate large amounts of tertiary deformation without cracking. This
assumption is made throughout the paper.

The initial failure of a structure may be predicted from a knowledge of the stationary creep
stress distribution. However, this initial or lower bound failure time is very pessimistic when the
material is ductile or when high stress concentrations are present[l]. A complete solution
requires the analysis of failure propagation from initial failure to ultimate collapse. By assuming
idealised creep laws, a number of authors (Kachanov [2], Hayhurst [3], Hayhurst and Leckie [4])
have analysed the propagation of failure for some simple structures. For more complex
structures, Goodall et al. [5] have obtained solutions using finite element methods. However, such
methods require large amounts of computer time and are unlikely to become part of the normal
design process.

For structures subjected to steady loading, Goodall and Cockroft [I] have obtained an upper
bound on the rupture life. This bound is based on limit analysis and lies close to the true rupture
life for many simple structures. Because the upper bound is unconservative, detailed
experimental and theoretical study is required to develop correction factors which may be used
with the upper bound to give a safe result. Developing this approach, Goodall et al. [5] have
shown that it is possible to predict the life of structures from a knowledge of the rupture stress of
the material, the limit load and the elastic stress concentration factor.

An alternative approach has been presented by Martin and Leckie[6] and by Leckie and
Hayhurst [7] who have derived lower bound failure times for kinematically determinate
structures. For high values of the creep deformation index and for materials with creep
deformation and rupture surfaces of the same form, this lower bound result can be expressed in
terms of the limit load [7]. The result obtained is identical to the upper bound result of Goodall
and Cockroft[l] and hence both methods should be exact under such circumstances. This is
reflected in the excellent agreement between experimental and predicted behaviour obtained by
Leckie and Hayhurst [7]. For a material (copper) with deformation and rupture surfaces of
different form, the experimental results [7] appear to agree well with both the lower bound [7] and
the upper bound [I].

In the present paper, the upper bound of Goodall and Cockroft[l] is extended to cover
time-varying loading conditions and time-dependent spatially varying temperature distributions.
The previous result for constant loading[l] is obtained as a special case. The effects of load
variations and temperature distributions are examined by studying three simple structures. The
simplified approach to life assessment proposed by Goodall et al. [5] is examined for these
structures and a suitable extension is proposed.

2. BASIC ASSUMPTIONS AND DESCRIPTION OF MATERIAL BEHAVIOUR

Consider a body of volume, V, surface, S, with negligible body forces. This is subject to a
given history of loading Pi (t) over part Sp of S and to zero surface velocities over the remainder
Suo The temperature distribution 8(x, t) is a given function of position, x, and time, t. The virtual
work equation is

(2.1)

where cril is any stress distribution in equilibrium with the applied loads Pi and Eij is any
kinematically admissible strain-rate field with corresponding velocities Ui. All deformations are
assumed small so that changes in geometry may be neglected.

It is assumed that creep rupture under a varying stress and temperature history is governed by
the life fraction rule of Robinson[8]. Consequently, for a uniaxial stress history, cr(t), and a
temperature history, 8(t), rupture occurs at a time t, given by

(" dt
Jo t,(cr, 8) = I

(2.2)

where t,(cr, 8) is the rupture time corresponding to a constant stress level, cr, and a constant
temperature, 8. For uniaxial failure in the stress range of practical interest, it is usually
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sufficiently accurate to assume that

g(8)a m t,(a, 8) = constant.
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For multiaxial stress conditions it is assumed that the rate of creep damage, D, at any point is
given by

(2.3)

where l{!(aij) is a positive, homogeneous function of degree m in aij, and g(8) is a positive
function of the temperature, 8. l{!(aij) is assumed to be convex, so that any two stresses, at, a~,

satisfy the inequality of Hill [9],

( A) (B) (A B) al{!(a~) 0l{! aij -l{! aij - aij-aij -aB ;;. •
Uti

(2.4)

The creep resistance of the material is taken to be exhausted when the accumulated damage is
arbitrarily unity. If the lifetime of the structure is tro then from eqn (2.3)

f' l{!(aij)g(8) dt ~ I everywhere. (2.5)

At failure the equality holds at sufficient places for collapse to occur. Equation (2.5) reduces to
eqn (2.2) for uniaxial conditions.

3. THE UPPER BOUND

(a) For proportional loading and time independent temperature distributions
Consider a structure subjected to an applied loading system, Pi(t), which varies in a

proportional manner with time. Consequently

where ,." (t) is a time dependent scalar quantity and pt is the loading at some arbitrary time to.
Furthermore, it is assumed that the temperature varies in space but not with time. At any instant,
t, there is a stress distribution, a:,in equilibrium with the applied loads, Pi (t), which minimises
the maximum value of l{!(a;j)g(8) within the structure. Denoting this maximum value by t*(trt,

(3.2)

Solution of this extremum problem is analogous to the determination of the limit load of a
structure com}lOsed of material with a yield criterion l{!(aij)g(8) ~ (t*r l

• Consequently the stress
distribution a: determines a collapse mechanism with an associated kinematically admissible
strain distribution, normal to the yield surface, given by (see, for example, HiII[lOD,

*
f i~ = Kg(8)f(t) al{!(a~j)

aaij
(3.3)

where

K=O * 1 }
for l{!(aidg(8) < t*

* 1for l{!(aij )g(8) = t* .
(3.4)

Here K is a scalar quantity which varies with position x but is defined to be independent of time
by absorbing the time dependence into f(t). This is admissible in view of eqn (3.1).
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Applying inequality (2.4) to the actual stress distribution au and the limit stress distributiona: and multiplying by Kg«(J) gives

Integrating over the lifetime noting relations (3.3), (3.4), and (2.5),

(3.5)

Integrating (3.5) over the volume using the virtual work expression (2.1),

{l- f' t~(t)} LK dV~O.

Since K is non-negative from the principle of maximum plastic work[lO],

rt
, dt

Jo t*(t)';;; 1. (3.6)

This result may be expressed in a slightly different, and perhaps more meaningful form. Using
eqn (3.1), t*(t) == t: p, -In (t) where t: is the upper bound failure time determined for the constant
loading P,o. Thus equation (3.6) becomes,

(3.7)

This implies that the cumulative damage law that applies to the stresses in a uniaxial test may also
be applied to the load factor p,(t) occurring during proportional loading. In addition, it may be
seen that for constant loads and temperature distributions, inequality (3.6) reduces simply to,

tr ,;;; t*

which is the result obtained by Goodall and Cockroft[l] for steady loading.

(3.8)

(b) Arbitrary load and temperature variations
For more general loading, the scalar K is time-dependent and inequality (3.6) is not valid.

However, an upper bound may be obtained by using the limit solution iT:, t* derived for the
mean load Pi and a mean temperature effect g«(J) defined by

where

- 1 ft,
Pi ==- P, dt

tr °
g«(J) == [i 1" g«(Jf1/(m-J) dtrm-Il

Then relations (3.3) and (3.4) are replaced by

-~ == K- at/J(iT.;7) -(D)
E'l a- guaij

K == 0 for t/J(iT:)g«(J) < <t*)-']
K ~O for t/J(iTi~)g«(J) == (t*r ' .

(3.9)

(3.10)

(3.11)

Applying inequality (2.4) for the actual stress alj and for the stress, aiT~ where a is a
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time-dependent, positive scalar,

.,,( ) .,,( - *) arfr(aui1) ( - *) >- 0

." aii -." aaii - a-* aii -aaii ".. .
a atj
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(3.12)

(3.13)

Multiplying eqn (3.12) by Kg(8) and using the homogeneity of rfr(aii) and eqns (3.10), (3.11),

- Ka mg(8) a m
-

l g(8L* _*
K·I'(a;-)g(8)- _ Edai·-aar)~O.

." I g(8)t* g(8) J J J

The scalar, a, is chosen so that a m -'g(8) = g(8). In view of eqn (3.9), the scalar a has a mean
value of unity over the lifetime. Integrating eqn (3.13) over the lifetime and then over the volume,
noting eqn (2.5), and the virtual work eqn (2.1), gives

(3.14)

It should be noted that eqn (3.14) is identical to eqn (3.8) for constant loading conditions, but for
proportional loading it can readily be shown to be a less stringent upper bound.

In the derivation of inequalities (3.6) and (3.14), g(8) has been presented as a temperature
effect. However, the results are clearly unaffected if g(8) describes the spatial variation of
rupture properties caused by other effects. For instance, the structure could be initially
non-homogeneous due to the presence of welds or the effects of heat treatment.

4. THE LOWER BOUND

The upper bounds presented in Section 3 are determined purely by the creep rupture
behaviour. However, to obtain a lower bound, information about the creep deformation
behaviour is also required. For materials which exhibit a prolonged period of secondary creep, a
lower bound under constant loading can be taken as the rupture life corresponding to the
maximum stress occurring in the stationary state[l]. This method will be acceptable if the
redistribution time to the stationary state is small compared to the lifetime and if the peak stress
is sufficiently low for a prolonged period of secondary creep to be present. A rapid method of
estimating redistribution times has been given by Calladine[l1]. For practical purposes, the
assumptions are reasonable since structures designed for lifetimes in excess of twenty years must
have low operating stresses.

Under cyclic loading, a structure settles down to exhibit a periodic response when it may be
termed to be in a cyclic stationary state. For cycle times which are short compared to the lifetime,
a good approximation to the cyclic stationary state may be obtained by neglecting the effects of
stress redistribution within the cycle. Ainsworth[l2] has shown that such a solution may be
obtained using methods analogous to those used to determine the constant load stationary
solution. The lower bound is then taken as the time to failure at the point in the structure which
has the maximum damage per cycle. Denoting the steady cyclic stress distribution by a:t for a
cycle time T,

(4.1)

This bound is only acceptable if the redistribution time to the cyclic stationary state is small
compared to the lifetime and if the stresses are sufficiently low for a prolonged period of
secondary creep to be present. This latter requirement may also be considered as the requirement
that damage has no effect on the creep rates until times close to the failure time. As in the case of
constant loading, the assumptions should be reasonable for practical structures.

For steady loading, a rapid method of evaluating the maximum stress, and hence the lower
bound, has been presented by Calladine[13]. However, from a practical viewpoint, it is worth
noting that the lower bound is, in general, more difficult to evaluate than the upper bound.
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5. APPLICATION TO SIMPLE STRUCTURES

In order to determine whether a simple design approach can be developed for structures
subjected to time-dependent loading, it is necessary to examine some typical structures. In this
section, three geometries are examined: a two-bar mechanism, a thin circular disc and a pipe. For
the simple structures considered, the rupture and deformation surfaces are assumed to be

(5.1)

where U e is the von Mises equivalent stress. Creep strains, normal to the deformation surface, are
then given by

(5.2)

where Sij is the deviatoric stress tensor. For all cases, the structure is assumed to be in the
stationary (or cyclic stationary) state until initial failure and subsequently to be in a succession of
stationary states with failed material only able to withstand a hydrostatic stress.

(a) Two -bar structure
The structure shown in Fig. 1 is considered. It consists of two bars with areas A 1> A 2 and

lengths 11, h. The arrangement is constrained to move vertically and is loaded with a vertical
force, P, which varies as shown in Fig. 2. By neglecting the effects of stress redistribution within
the cycle, it is possible to obtain the steady cyclic solution and to compare the upper and lower
bounds with the "exact" solution. For a given lifetime, the load bearing capacities P", P, pL for
the upper bound, "exact" and lower bound solutions respectively, are compared in Fig. 3. Since
the loading is proportional, the upper bound solution given by eqn (3.7) is used. It may be seen
that the errors in both bounds are increased over the steady load values (A = 1 or /.L = 1), but the
increases are only significant when the load change is large and the larger load acts for a small
fraction of the total time.

(b) Thin circular disc
Another case of proportional loading is the disc shown in Fig. 4 subjected to a radial tension

which varies as shown in Fig. 2. The stationary solution is obtained by a rapidly convergent

A./A,,, ~

I. 1I,"O'S~

p

Fig. 1. Geometry of two-bar structure.
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Fig. 2. Load variation.
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Fig.4. Geometry of disc.

iterative method described by Rabotnov [l4lfor steady loading and extended to cyclic loading by
Ainsworth[l2]. Initial failure occurs at the inside and propagates rapidly through the disc (see
Fig. 5). By evaluating a succession of steady cyclic solutions, the actual failure time of the disc is
obtained.

For the creep index, n =1 and rupture index, m = 2, it is possible to obtain an analytic
solution for the final rupture time (Appendix 1). This enables the numerical procedure to be
checked and indicates that the numerical results are accurate to within 1%. The upper bound
given by eqn (3.7) can be obtained analytically and the derivation is given in Appendix 2. For a
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Fig. 5. Disc, propagation of failure front.

given lifetime of the structure, the load bearing capacities are compared in Fig. 6. As in the case
of the two-bar structure, the errors in the bounds only differ significantly from the steady load
errors when the load change is large and the larger load acts for small fraction of the total time.

(c) Tube under internal pressure
This structure is analysed in order to assess the effect of temperature distributions on the

accuracy of the bounds. The geometry of the tube is shown in Fig. 7. It is subjected to a constant
internal pressure and to a radial temperature distribution caused by maintaining the inner and
outer surfaces at differing temperatures 6j and 60 • Plane strain conditions are assumed. Detailed
analysis of the structure is given in Appendix 3. The temperature effect g(6) is taken to be of the
form

g(6) = exp {a (6 - 6;)}.

In order to give a quantitative value to the temperature difference, for the results plotted, a
has been taken as 4.4 x 10-2/deg. (Blackburn [15] for ASTM 304 and 316 stainless steels at 600°C).

The failure front may propagate from the inside or the outside or failure may occur at all radii
simultaneously. In the last case, the upper and lower bounds coincide and are, therefore, exact.
Some typical results are presented in Figs. 8-10 for the upper bound, exact, and lower bound
pressures p u, p, PL to cause failure in a given time. For the case n = m = 2 the upper bound
depends only on the absolute value of (60 - 6j). In general, however, the bounds depend on which
surface is at the higher temperature (see Fig. 10). It may be seen from Fig. 10 that the ratio (p U /p)
is much less sensitive to the temperature difference and the indices m, n than the lower bound
ratio (p L/p). Also the bounds improve as the radius ratio f30 increases which is to be expected,
for when the tubes are thin they become statically determinate.

6. CONCLUDING REMARKS

Bounds on the life of structures subjected to variable loading have been derived. In general,
the upper bound, based on limit analysis, depends on the mean load and a mean temperature
distribution. For the case of proportional loading, the upper bound is identical in form to the
bound for constant loading. A lower bound on life is taken as the time when the first part of the
structure fails. Although the bounds derived are valid for materials which may have different
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Fig. 7. Geometry and temperature distribution of tube.

rupture and deformation surfaces, the errors in the bounds will clearly depend on whether or not
the surfaces are similar. In this section, attention is restricted to materials which have similar
rupture and deformation surfaces, and an empirical formula, suitable for design purposes, is
suggested.

Application of the bounds to simple structures indicates that the errors of the bounds for
variable loading are greater than those occurring at steady load. However, the increase in error of
the upper bound is negligible except when load changes are large and the lower load acts for a
large fraction of the total time. Such extreme loading cycles are unlikely to be important in
practice. The lower bound is very sensitive to the values of creep index and rupture index and to
temperature variations whilst in contrast the upper bound is relatively insensitive. A good, and
usually conservative, estimate of the error of the upper bound is given by the error under uniform
temperature conditions.

In view of the above comments, design rules based on the upper bound for constant loading
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Fig. 9. Tube, effect of temperature difference on the upper bound.

will be useful for variable loading and non-uniform temperature conditions. Goodall et al. [5] have
proposed that the true load bearing capacity, P and the load bearing capacity, P", given by the
upper bound can be approximately related by

p u

p = l+ w(n)(x -I) (6.1)

where X is the ratio of the collapse load to the load to first yield and w(n) is a positive function of
the creep index, n. They suggest that a conservative estimate of the true load bearing capacity,
for all indices n, may be obtained by setting wen) = 0.05.

For the three structures considered, the ratio (PU /P) has been plotted against X on Fig. II for
steady loading and uniform temperature conditions. A variation in the elastic stress concentration
X is achieved by varying the area and length ratios for the two-bar mechanism and by varying the
ratio of internal and external radii for the disc and tube. The creep and rupture indices have been
taken equal (n = m) and the results plotted are for the highest ratio (P U / P) in the range
1",; n ",; 00. Predictions based on these results are, therefore, conservative for the complete range
of n. For the two-bar mechanism the maximum ratio occurs at values of n which increase with
increasing X, n being between 2.2 and 3.5 for the results plotted. For the disc, the maxima occur
for n = m =2.8 and for the tube the maxima are for n = m =2.4.
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It can be seen from Fig. 11 that a suitable slope is given by w(n) = 0.13, although for high
values of X this may be unduly conservative. This slope is greater than the slope w(n) = 0.05
suggested by Goodall et al. [5], and is in line with results of Goodman [16] obtained for less
restrained structures such as torispherical heads. From the present investigation it may be
inferred that the simple relationship Pu IP = 1+O.13(X - 1) should provide a conservative
estimate of the load bearing capacity of a fully ductile structure under most loading and
temperature conditions.
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APPENDIX l. PARTICULAR SOLUTION FOR THE RUPTURE OF A THIN DISC
For n I, the stationary creep solution is the elastic solution

(AI.l)

where ~ =rib, a =alb and fT., fT, are the hoop and radial stress components respectively. The equivalent stress fT. is then
given by

, 2 2 1+ 3a 41t
fT. = fT, + fT. - fT,fT. = (I a2j2'

For rupture index m = 2, failure will occur at radius ~ at time t for which

[' 1+3a 4WJo (1- ( 2 )' d.,. = I, where ~ =a(1)

and a = a(T). Initial failure occurs for ~ = ao at time t, given by

where ao is the initial radius ratio. Differentiating (AU) twice w.r.t. time gives

(A1.2)

(AU)

(AlA)

(AI.5)

(AU) can readily be integrated by using the substitution da/dt = p, and using the initial conditions, the final rupture time, t"
is given by

.1.:.=1 ~[I-ao_2(1_ )+I-ao']
tf + (1- a02j2 ao ao 3 . (A 1.6)
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Under variable loading, the initial failure time t, is increased by the factor [A +(1- A)1t'r' but the final result (A1.6) is
unaffected.

APPENDIX 2. UPPER BOUND SOLUTION FOR THIN DISC
The upper bound solution is one for which the equivalent stress u. is independent of radius, i.e.

(A2.1)

(A2.2)

The equilibrium condition is

(A2.3)

Combinging (A2.2, 3)

Setting U r =(2A IV3) cos tP, (A2.4) becomes

IJdr f sin tP dtP
2 r = cos tP - \13 sin tP •

The substitution tan tP = t enables (A2.5) to be integrated giving finally

(A2A)

(A2.5)

(A2.6)

The conditions U r =0, r =a and Ur =I, r =b enable the constants A, B to be evaluated. For bla =4, A =1.183. The
upper bound solution then gives tt =(1.I83rm and

(1183rm

tr~{A+(l-A)ltmr (A2.7)

APPENDIX 3. CREEP RUPTURE OF A THICK-WALLED CIRCULAR CYLINDER
UNDER INTERNAL PRESSURE AND A THROUGH THICKNESS

TEMPERATURE GRADIENT
The geometry and loading are shown in Fig. 7. The axial strain rate Ex is assumed zero and from conditions of volume

constancy and compatibility this gives

(A3.1)

where e" eo are the radial and hoop strain rates respectively and C is a constant. The creep rates follow (5.2) so that the plane
strain condition requires Sx =iux - tUr - tuo =0 and the equivalent stress then simplifies to

Then from (5.2)
. . V3" (B)

Er = - Eo = - TU' g

where
g(B) =exp{a(B - B,)}

and the steady-state temperature distribution is

(A3.2)

(A3.3)

(A3.4)

Combining (A3.4, 5)
(A3.5)

(A3.6)

The equilibrium condition is

Combining (A3.1-7) and using the boundary conditions ur(r,) =- p, ur(ro) =0 readily leads to

_V3P{ T/r-n
} _ 2+ B

u. - 2 -n -n where 11 - .r, - ro n

(A3.7)

(A3.8)

Creep damage will occur and after some time a failure front will propagate either from the inside or the outside. Denote by
/3(t) the ratio of the internal and external radii at time t,/3 = r,/ro, and by P the ratio of radius to external radius p rlro. If
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damage propagates from the outside p will be a function of time p(t). The stresses are assumed to always have their
stationary values given by (Al8) which in terms of {3, p is

The rate of creep damage at any point is

V3P{ 1j }-~
(T. = -2- {3" - 1 P . (A3.9)

(AlIO)D' m (IJ) = (V3P)m{3 _8{_1j_}m (8-m") ('O(t»)8
(1, g 2 0 {3 '" I P ,

where (3o is the initial ratio ,,/ro. From (A3.10) there are three possible modes of failure: (a) m1j > 8, failure occurs at the inside
first and propagates to the outside. (b) m1j = 8, failure occurs at all points simultaneously. (c) m1j < 8, failure occurs at the
outside first and propagates to the inside.

(a) m1j > 8
The failure front reaches a radius p at a time t when the accumulated damage is unity and for which tHt) =p. From

(A3.IO)

Differentiating (A3.1l) w.r.t. time, eliminating the integral using (Alll) and rearranging gives

d{3 = (V3P)m{3 _"_1_ {_1j_}m{3'+8
dt 2 0 (m'T/ - 8) 1-{3" .

Initial failure occurs at p = {3o for time tl given from (A3.11) by

Final failure occurs when the damage reaches the outside {3 = I at time t = t,. Then from (AlI2)

Combining (A3.B, 14) gives the pressure P for rupture in time t, as

where

J({3o) =i' [I.=- {3:]m{3-0+8) d{3.
~o 1 {3o

(b) m1j =8
It immediately follows from (A3.l0) that

(c) m'T/<8
Defining p, = r/r, = p/{3, in like manner to (A3.11), for {3(t)= p,.,

The results then follow in identical manner to those for case (a) giving

(
V3P)-m "[{3o'" _I]mt, = -2- {3o --1j-

where

(A3.11)

(A3.12)

(A3.B)

(A3.14)

(A3.15)

(A3.16)

(All7)

(A3.18)

(Al19)

(A3.20)

(Al2l)

Lower bound
Alower bound on load is given by the load to produce initial failure in time t~ The lower bound is then obtained by setting
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t, = t, in (A3.I3,19),

pL =J3 t,-lIm[I ~P0"l mT/ > 6

pL = J3t,-"m~o[("m)-'l[I-1/f3o·]. m1/ < 6.

For m1/ =6, pL =P as given by (A3.I7).

Upper bound
The upper bound load bearing capacity is given immediately by replacing 1/ with 6/m in (A3.17)
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(A3.22)

(A3.23)


